

Siting Committee Workshop Evaluating CEQA and Permit Streamlining for Distributed Generation

April 20, 2000
California EnergyCommission
Judy Grau, Distributed Energy Resources
Program Manager

CPUC OIR Definition of DG

- u Generation, storage, or DSM devices, measures and/or technologies that are connected to or injected into the distribution level of the T&D grid.
- u Located at customer s premises on either side of meter
- u Located at other points in distribution system, such as utility substation

Today's Central Utility

Tomorrow's Distributed Utility?

Technologies

- u Fossil-fuel based distributed generation
- u Non-fossil fuel based generation
- u Storage technologies

Common Traits in DG/DER Technologies

- u Mass produced
- u Modular
- u Small (<20 MW)
- u Support system reliability
- u Provide economic advantage to end-user, ESP, and/or UDC
- u Provide customer and UDCs an alternative to standard generation options

Economic Advantage From DG/DER Systems

u Economic advantages included one or more of the following:

Load management

Reliability

Power quality

Fuel flexibility

Cogeneration

Deferred or reduced T&D investment or charge

Increased distribution grid reliability/stability

Fossil Fuel Technologies

u Internal-combustion engines

Diesel engines

Natural gas engines

- u Micro-turbines
- u Fuel cells
- u Stirling engines

Photo courtesy of Caterpillar

Photo courtesy of Caterpillar

Photo on right courtesy of Bowman.

	IC Engines	Small Turbines	Micro- turbines	Fuel Cell
Commercial Availability	Well established	Well established	New industry	Well established
Size	50 kW- 5 MW	1 MW — 50 MW	25 kW — 75 kW	1 kW — 200 kW
Installed Cost (\$/kW)	\$800 — \$1500	\$700 — \$900	\$500 — \$1300	\$3000
O&M Costs (cents/kWh)	0.7 — 1.5	0.2 — 0.8	0.2 — 1.0	0.3 — 1.5
Fuel Type	Diesel, propane, NG, oil & biogas	Propane, NG, distillate oil & biogas	Propane, NG, distillate & biogas	Hydrogen, biogas & propane
Typical Duty Cycles	Baseload	Baseload, intermed. peaking	Peaking Intermed. Baseload	Baseload

Environmental and Operational Attributes of Fossil Fuel Based Distributed Generation

Technology	IC E ngines	Small Turbine	s Mi crotur bin	e Fuel Cell
Electric	30-50%	25-40%	20-30%	40-70%
Efficiency		(simple cycle)		
(LHV)				
Fuel	Diesel,	Propane,	Pr cpane,	Hydrogen, Biogas,
	Propane, Nat 1	Natl gas,	Natl gas,	Propane
	Gas,	Distillate oil,	Distillate oil,	
	Oil, Biogas	H og as	H og as	
Usable	FrDieæ1180-	500-1100	40 0 6 5 0	140-700
Tempera tur e for	190			
CHP (F)	Other 300 to			
	500			
Nox Emmissions	Fr Diesel 3-	0.3 to 4.0	0.4 to 2.2	<0.02
(lbs/MWh)	33			
	Others2.2-28			
	90-97%	90-98%	90-98%	>95%
Ava ilab ii ty				
Noise	Moderate to	Mod erate	Moderate	Low
	high (requires	(enclosure	(enclosure	No enclosure
	building	supplied with	supplied with	required
	enclo sure	uni t)	uni t)	

Renewable Energy Technologies

- u Photovoltaics
- u Solar-dish Stirling
- u Small wind systems (<40 kW)
- u Large wind systems
- u Stirling engines (biomass, landfill gas)

13 kW PV system. Photo courtesy of Edison Technology Solutions

2 kW PV & Wind hybrid system. Photo courtesy of Edison Technology Solutions

Commercial Status of DG/DER

	Photovoltaic	Dish- Stirling	Small Wind	Large Wind
Commercial Availability	Well established	Year 2000?	Well established	Well established
Size	0.30 kW — 2 MW	30 kW and larger	600 watts — 40 kW	40 kW — 1.5 MW
Installed Cost (\$/kW)	\$6,000 — \$10,000	\$10,000/ kW (now) \$400/kW (later)		\$900 — \$1,100
O&M Costs (cents/kWh)	Minimal	,	Varies	1.0
Fuel Type	Solar	Solar and NG (hybrid mode)	Wind	Wind
Typical Duty Cycles	Peaking	Peaking or Interm. Hybrid mode	Varies	Varies

Storage Technologies

- u Batteries
- u Modular pumped hydro
- u Superconducting magnetic energy storage (SMES)
- u Flywheels
- u Ultracapacitors

2kWh Flywheel.

Photo courtesy of Trinity Flywheel, Inc.

Superconducting Magnet Provides Compact Energy Storage

Super Conducting Magnet Assembly. Photos courtesy of American Superconductor

PQ AC Installed at Fairbluff, NC

Mobile super magnetic energy storage (SMES) unit. Photo courtesy of American Superconductor

Most Likely Users of DG in Next Five Years

	IC Engines	Small and micro turbines	Storage	Fuel Cell	PV	Small Wind	Large wind
Indust.	Х	X	Х	Х			
Comm.	X	X	Х	X	X	X	
Resi- dential	Х			Х	Х	Х	
UDC	X	X	X	X	Χ		X

Permitting Issues

u Slow review, or denial, of distributed energy projects due to a lack of:

consolidated, clear information on siting requirements

universally accepted standards clearly defined impacts and benefits

u Permit overload? Maybe someday...

Air Quality Issues

- u Some technologies do not trigger permit thresholds or are otherwise exempt (e.g., emergency use only)
- u Amount and types of DER penetration not known
- u Cumulative impacts could be significant

